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Abstract

From March to July 2018 I’ve been doing my research internship with Anil Madhavapeddy in the
University of Cambridge Computer Laboratory’s OCaml Labs. This internship was about systems
and compilation for micro-controllers, working with the OCaml programming language, the Mirage
operating system library and ESP32 as the micro-controller target. My goal was to extend and
test OCaml capabilities on embedded devices by developing a new compilation backend targeting
ESP32 processors and porting Mirage operating system unikernel framework to this platform. As
this has been achieved with success, this internship results in a proof-of-concept for safe and portable
programming on a cross-compiled software environment targeting constrained devices. In the end
I’ve been able to get an OCaml compilation backend for ESP32 micro-controllers and a fully working
Mirage system including network features, and this work will be presented in a talk at ICFP 2018
OCaml Workshop1. I warmly thank Anil Madhavappedy and Gemma Gordon for having me there,
as well as the whole OCaml Labs staff and interns with whom I had really good times and for some
helped me in my project.

Contents

1 Introduction 2

1.1 OCaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Mirage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 ESP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Internship overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A new OCaml backend 5

2.1 Bytecode compilation on ESP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Native compilation support for Xtensa processors . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Cross-compiling for ESP32 microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 How to port a package for a new architecture . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Unikernels for embedded applications 11

3.1 Unikernels and Mirage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Mirage system-dependent code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Using functors to build modular code: a wifi library story . . . . . . . . . . . . . . . . . . 14

4 Conclusion 15

4.1 Issues encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 What remains to do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 What I have achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1https://icfp18.sigplan.org/event/ocaml-2018-papers-ocaml-on-the-esp32-chip-well-typed-lightbulbs-await

1

https://icfp18.sigplan.org/event/ocaml-2018-papers-ocaml-on-the-esp32-chip-well-typed-lightbulbs-await


1 Introduction

1.1 OCaml

Figure 1: OCaml logo

OCaml is a programming language that allows functional, imperative and
object-oriented programming styles. The project started 22 years ago and
is maintained by INRIA (French Institute for Research in Computer Science
and Automation). Each system release has a publication which describes
the language. For my project, I relied on the 4.06 system release [2]. OCaml
features both a bytecode runtime and native high-performance compilation,
uses a garbage collector and offers neat features such as a powerful type
system, pattern matching, functors (parametric modules) and various optimisations like tail-recursion.
OCaml Labs has been founded in 2012 by Anil Madhavappedy to promote the usage of OCaml in real
world applications. Anil also constributed to Real World OCaml [5] which is a nice reference to learn
about the language. OCaml has been derived into another syntax named ReasonML which is developped
and maintained by Facebook. Here is an example of how OCaml looks:

(* Defines a type to represent binary trees. *)
type tree =

| Leaf
| Node of int * tree * tree

(* Recursive function that computes the sum of values in the tree. *)
let rec sum item =

match item with
| Leaf -> 0
| Node (value, left, right) -> value + (sum left) + (sum right)

(* Create a tree. *)
let myTree =

Node(
1,
Node(2, Node(4, Leaf, Leaf), Node(6, Leaf, Leaf)),
Node(3, Node(5, Leaf, Leaf), Node(7, Leaf, Leaf))

)

(* Compute the sum of myTree's nodes. *)
let _ = Printf.printf "The sum is %d\n" (sum myTree)

Type features, maturity in the project, a high number of packages trough opam package manager, and
an efficient compiler makes OCaml a pretty good subject of research considering that we want to port a
language for a micro-controller architecture. This makes another step towards OCaml versatility in appli-
cations.

Figure 2: Software stack simplification
for specialized applications using Mirage.
Taken from Unikernels: Library Operating
Systems for the Cloud

1.2 Mirage

Mirage is an operating system unikernel framework written
in OCaml first released in 2013 [3]. An unikernel is a single
purpose application destined to run on bare metal or within
a virtualized environment. As a consequence it ships its sys-
tem dependencies as libraries and don’t rely on a traditional
operating system interface, thus condensing the applicative
stack.

The advantages of unikernels in comparison to traditional
applications is that unikernels can be:
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• faster as they get rid of the kernel/user separation. By
removing context switches, the application can be sub-
ject to more efficient optimizations.

• lighter as the application can ship only useful code.
Static analysis and link time optimizations can lead to
dead code elimination, this can’t be achieved within a
traditional operating system.

• safer as not having an operating system and shipping
minimal code greatly reduces the surface of attack of
the application. The surface of attack is the set of all
weak points of the application. Having a general pur-
pose operating system leads to a broad surface of attack
as each functionality can introduce a weak point. By
removing all unused functionalities (such as the write
feature in a filesystem, remote control features, ..) the
unikernel application reduces its surface of attack to
code that is actually needed for the application. No
more unsecure telnet server that has unintentionally
been left on your router OS!

Mirage offers the ability to easily build unikernel applications by taking advantage of OCaml features.

1.3 ESP32

1.3.1 Architecture

Figure 3: An ESP32 module.
Its dimensions are 18x25.5x2.8mm.
ESP32 are also sold as development
boards.

ESP32 is a series of micro-controllers designed by Espressif and
released in late 2016. They are designed as low-power, low-cost,
high-connectivity chips with an aim for embedded applications. In
this section I’ll take an overview of the hardware embedded in that
chip. The datasheet is available online2.

System The microcontroller relies on a dual-core 240MHz Xtensa
LX6 processor along with 520kB of internal RAM and 4MB of flash
memory, making a really good programming environment for em-
bedded applications (some says that it’s overpowered, but we’ll talk
about power later). Xtensa is a series of configurable RISC pro-
cessors developped by Tensilica which aims for versatility with a
customizable instruction set. An Xtensa processor is designed by
taking the core architecture, adding off-the-shelf features such as
floating point support, memory protection, exceptions, which are
all described in the Xtensa Instruction Set Architecture reference,
and designing additional hardware features if needed, using the Tensilica Instruction Extension language.
The Xtensa LX6 variant has the following specification:

• RISC core architecture
• 5-stage pipeline
• 16/24 bits instruction size
• 16 general purpose 32 bits registers named ‘a0‘ to ‘a15‘
• Windowed registers: the 16 registers are mapped onto 64 physical registers according to a window

offset value. When used with special calling conventions this can greatly reduce register spilling.
• Interrupt vector
• Single-precision floating-point coprocessor
• Boolean registers
• Digital Signal Processing features

If 520K of RAM is not enough, ESP32 supports external SPI-connected RAM and some chips are sold
with an additional amount of 4M external RAM. Flash size is also configurable, from 1MB to 16MB.

2https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
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Low-power This chip has great focus on low-power features. It’s possible to put the whole chip
in deep sleep and program an ultra low-power coprocessor (ULP) to read sensors, timers, perform light
computations and wake the chip up when needed. The ULP is a 16-bit, 4 registers processor programmed
by writing in a special memory that remains usable in deep sleep (RTC slow memory). It’s also possible
to dynamically update the main processor frequency, choosing between 80MHz, 160MHz and 240MHz.
According to the datasheet, power consumption at 3.3V usually ranges from 0.1mA to 68mA with spikes
up to 0.3A on extensive usage of Wifi/Bluetooth.

Connectivity ESP32 features an onboard Wifi transceiver and Bluetooth connectivity. Wifi supports
modern protocols and encryption types, with hardware acceleration. Moreover it implements a propri-
etary long range/low bandwidth protocol over Wifi which claims a range of 1 kilometer3. The Bluetooth
controller supports 4.2 Low-Energy (BLE) and classic Bluetooth. During my internship I focused on Wifi
networking features and let Bluetooth for future work.

1.3.2 ESP-IDF and FreeRTOS

Figure 4: Directory layout for a project application
using ESP-IDF.

Espressif’s Iot Development Framework is the
best way to program an ESP32 chip as it gives
you the low level features through a C API. Wifi
drivers are accessible within a simple interface, and
even allows you to use high level features such as
network sockets trough LwIP. The framework also
ships mandatory bootloader code and link scripts
that exports hidden internal symbols. Most of the
code base is open source and available on Github,
but there are still hidden code such as Wifi and
Bluetooth internal drivers. The ESP32 software
layer is based on FreeRTOS which is a preemp-
tive Real-Time Operating System. It provides
scheduling for multi-tasking, inter-task commu-
nication, timings and synchronisation primitives.
This lightweight kernel is used as a foundation
for more complex applications. Documentation for
this framework is available online4.

It’s really hard to build an application with-
out this framework, because it provides hardware
drivers as libraries that would be otherwise painful
to implement. It might be possible to get rid of the
ESP-IDF but it’s out of scope for this internship. I will therefore rely on ESP-IDF as a base for building
OCaml applications on ESP32. To build and flash an ESP32 application, it’s only needed to have a GCC
cross-toolchain (one is provided and maintained by Espressif) and the ESP-IDF repository downloaded
somewhere, its location being exposed by IDF_PATH environment variable. This being set-up, a project
consists in a sdkconfig file in a directory, a Makefile that includes ESP-IDF project Makefile, and a
component directory containing a configuration makefile to build the component and code. In a nutshell
to have some code running on ESP32, the application component just have to be able to build an Xtensa
object file containing an app_main symbol. This symbol is the entry point of the application, which
will be called when the system is initialized. Therefore the hardware boot and low-level system setup is
achieved by ESP-IDF code, which has spared me a lot of debugging.

1.4 Previous work

Previous work has been done on getting OCaml running for ESP32 chips. It has been achieved by
Sadiq Jaffer who got a first proof-of-concept of bytecode execution. He explained the process on his blog5,
and the experiment has yield some issues which were starting points for my internship.

3https://blog.hackster.io/long-range-wifi-for-the-esp32-9429ab89f450
4https://esp-idf.readthedocs.io/en/latest/
5https://toao.com/blog/getting-ocaml-running-on-the-esp32
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Previous work on cross-compilation with OCaml was done by whitequark who designed cross-compilation
toolchains for Android, IOS and Windows.

1.5 Internship overview

Here is a more detailed overview of what I did these 5 months. My work can be found on Github in the
well-typed-lightbulbs6 organization that I created for the occasion. I also wrote 6 blog posts on my
personal website7.

1.5.1 March

As I arrived in the lab, Anil gave me two main endgoals: porting MirageOS unikernel library to ESP32
micro-controllers, and getting a native compilation backend for the OCaml compiler. These two goals
seemed fairly independent as Sadiq Jaffer has been able to port the OCaml bytecode runtime on ESP32
architecture. My first thought was that I would be able to port Mirage packages by cross-compiling
C code and compiling OCaml code to bytecode. I spent a lot of time discovering Mirage and ESP32
ecosystems that I’ll take time to explain further on. I got the opportunity to participate in the MirageOS
spring hack retreat in Marrakesh, this was a great way to learn about unikernels, and understand the
structure of such a library.

1.5.2 April

The OCaml compiler source code is pretty pleasant to read, but severly lacks of documentation. My
time was spent reading very old commits from Xavier Leroy and taking the ARM backend as a base for
my Xtensa backend. Most of the backend has been built during this month, this was a fun time reading
documentation and chasing bugs. In the meantime I worked with the opam package manager to package
my Mirage port.

1.5.3 May

I’ve got my first unikernel running, it printed Hello every second, with a time stamp shown and a LED
blinking. After that some work was done in making this build reproducible. Eventually I’ve been able
to get Wifi networking features and controlling the LCD display. I also developped a semi-automatic
porting tool of opam packages.

1.5.4 June

I focused on porting Mirage libraries in order to get more features available for ESP32. My main
work was to get a full TCP/IP stack and a webserver running on the platform. I also worked on build
reproducibility and packaging. Another great step was to get dead code elimination which had a great
impact on memory usage of applications.

1.5.5 July

Some optimisations were done on the backend, and I also cleaned up some code. At this stage the
goal was to finalize my work by publishing clean packages and setting up reproducible build for sample
applications.

2 A new OCaml backend

To run an OCaml program, two choices are available:

• Compile it to bytecode with ocamlc and run it with ocamlrun
• Compile it with the native code compiler ocamlopt

6https://github.com/well-typed-lightbulbs/
7https://www.lortex.org/esp32/
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When dealing with a new target, bytecode execution is easier to achieve in comparison to the other.
Therefore my first focus was to run OCaml programs with to the bytecode compilation path. My OCaml
backend for ESP32 can be found on Github8.

2.1 Bytecode compilation on ESP32

Figure 5: Execution scheme of an OCaml bytecode
application on an ESP32 device.

One big advantage of bytecode is that it’s
architecture-independant code. As a consequence,
to get OCaml running on a new architecture, the
only thing that needs to be achieved is to build the
bytecode interpreter library. Once it’s available,
an OCaml application can be built for ESP32 by
compiling it to bytecode, embed it in C and link
it with the bytecode interpreter library and ESP-
IDF.

2.1.1 Compiling libcamlrun.a

libcamlrun.a is the OCaml bytecode interpre-
tation library which embeds a full OCaml run-
time for bytecode execution. It’s full written in
C, and relies on a small subset of libc which en-
ables easy cross-compilation. On ESP32, the GCC
cross-toolchain’s libc is a Newlib implementation
which is designed for memory and size constrained
devices. The OCaml 4.06.0 source code has been
my starting point in my work on the compiler.

Configuring the compiler Cross-compilation support on OCaml is not very glorious, but it’s possible
to build an OCaml cross-compiler by downloading the source code and using a parameter in the configure
script. The parameter is -target, it is a target triplet (CPU - vendor - system) that corresponds to the
desired compilation target. However the target that we want to have xtensa-esp32-elf doesn’t exist
yet, so the first thing to do was to update the configure script.

Tweaking parameters To support our target, several updates had to be made.

• Updating the configuration script to tell OCaml to use the GCC cross-toolchain for ESP32. This
is also where some architecture-dependant options are set-up.

• OCaml is primarily designed for targets that have a decent amount of memory. This is not the case
of ESP32 and configuration files have been updated to follow ESP32 memory conditions (520KB of
RAM).

After that it was possible to get a libcamlrun.a to link with OCaml bytecode and ESP-IDF. This work
was introduced by Sadiq Jaffer who was the first to run OCaml code on ESP32. His sample was made of
callbacks to C code in order to output text and blink a LED.

2.1.2 Personal contribution

That’s when I come into play, as some problems remained. The first one was that OCaml’s Printf
module didn’t work. This was fixed by digging into ESP-IDF and OCaml library code. I figured out that
OCaml opened file descriptor 1 for output, but at this time ESP-IDF didn’t have a proper file descriptor
system. In fact ESP-IDF had file descriptor 1 hardcoded to /dev/uart1, a not wired up serial output on
the board.

8https://github.com/well-typed-lightbulbs/ocaml-esp32/tree/4.06-esp32+lto
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The second one is that as the bytecode was loaded in RAM, applications with more modules than a
single Printf became too big to fit on a single chip. 520KB of RAM is short, but 4MB of flash should
be sufficient for more complex applications. My tought was that OCaml bytecode could be read-only
and therefore set in flash. Bytecode is embedded in C as 2 arrays of char, one for code and one for data.
Setting the code array to const should do the trick, right? Well actually not, it lead to illegal stores.
Bytecode is not const for a reason: it’s actually rewritten on statup to update instructions if the code
is threaded or if endianness differs. Hopefully, none of these was actually occuring and the rewrite step
was actually trying to rewrite the save value for each bytecode instruction. As the bytecode interpreter
library did not rewrite bytecode anymore, I’ve been able to store the OCaml bytecode on flash memory,
which spared a lot of space in RAM.

2.2 Native compilation support for Xtensa processors

I got my way up to bytecode execution, but this was too expensive to be a sustainable option in medium
to large scale applications. The space and speed improvement offered by native compilation was needed.

2.2.1 OCaml compiler hacking

Adding a new backend architecture in OCaml consists in

• asmcomp/xtensa: assembly emission code, made of

– proc.ml: defines registers and calling conventions for OCaml to OCaml and OCaml to C.
– arch.ml: gives word size, endianness and addressing modes.
– emit.mlp: assembly emitter. This is the core of the native backend, and consists in a large

pattern matching of the last intermediate representation variant, which given instructions and
locations (registers, stack memory) generates assembly instructions. This is a preprocessed file
with features a more readable assembly generation code.

– selection.ml: instruction selection from Cmm to the last intermediate representation.
– CSE.ml: common subexpression elimination, no architecture-specific work has been done there.
– reload.ml: instruction reloading, no architecture-specific work has been done there.
– scheduling.ml: it’s possible to input instruction timings in order to perform more precise

scheduling.

• asmrun: xtensa.S contains assembly code that makes the interface between code emitted by the
OCaml compiler and the OCaml runtime which is written in C.

Example This code section is assembly emission for a 3-way branching, with different branches if the
register is less than, equal, or greater to 1.

| Lcondbranch3(br1, br2, br3) ->
begin match br1 with

| None -> ()
| Some lbl -> `blti {emit_reg i.arg.(0)}, 1, {emit_label lbl}\n`

end;
begin match br2 with

| None -> ()
| Some lbl -> `beqi {emit_reg i.arg.(0)}, 1, {emit_label lbl}\n`

end;
begin match br3 with

| None -> ()
| Some lbl -> `bgei {emit_reg i.arg.(0)}, 2, {emit_label lbl}\n`

end;

Compiling a cross-compiler The first pre-requisite to compile a cross-compiler is that it’s mandatory
to build it with the same OCaml version. Moreover natural integer size must be the same between host
and target, I therefore used ocaml-4.06.0+32bit version as a base compiler. A standard make world
tries to build target executables which is not possible in my case. I added a world-cross compilation
target that address this issue by compiling only what’s needed (ocamlc, ocamlopt, libraries, ocamlmklib).
I also had to turn off bootstrapping features. When everything was set up, compiling the compiler would
take between one and two minutes.
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2.2.2 Xtensa backend

OCaml’s last intermediate language is not documented, so I reviewed ARM backend to understand what
was going on. Xtensa ISA has been my main tool to write the code emitter. I also used gcc and objdump
to see how some operations were compiled. Most operations were easy to emit but Xtensa have some
specialites that had to be taken into account. My main resource for native compilation was the Xtensa
Instruction Set Architecture9 and the ESP32 datasheet to figure out which options were enabled.

Register windowing At any time a window of 16 registers is visible, and this window can be rotated
back and forth of 4, 8 or 12 registers on function call and return. Xtensa ships 64 physical registers, this
acts as a highly efficient stack and can yield better performances than 16 fixed registers while keeping
instruction register addressing on 4 bits. Register windowing is implemented by:

• having more physical registers (64) than visible registers (16)

• instructions to rotate the window:

– CALLn label: prepare rotation by N registers by setting the two high bits of the return address
according to N and writing to a special register, and jump to specified address (offset).

– CALLXn register: same as CALLn but jumps to the address specified in register.

– ENTRY n: rotates register window according to the value of the special register and allocates
n bytes by updating the stack pointer.

– RETW: rotates the window back by an amount determined by the two high bits of the return
address that have been previously set up by CALL or CALLX. Then jumps on the concate-
nation of the 2 high bits of the program counter and the 30 low bits of the return address.
Therefore caller and callee must reside in the same 1GB section of memory. This can be
assumed on ESP32.

• Calling conventions is what holds everything up. As the rotation is between 4 and 12, there are
always a positive number of registers in common between the caller and the callee. This is how
parameters and return values are passed. With CALLn, n registers are saved and 16-n registers are
in common. Counting the return address and the stack pointer, that makes it 2, 6 or 10 registers
that can be transmitted. The main question remains: what happens when the window cycles ? It
overflows, as registers are already used, they must be spilled on the stack where the function that
owns these registers will be able to find them back. As a consequence the ABI is not a standard
one: at each function call there is room kept in case of spilling.

Spilling is automatically managed by two exceptions: window overflow and window underflow.
Window overflow occurs when a read or write is done on a 4-registers group that is already marked
as used. Window underflow occurs when returning to a function that got its registers spilled on the
stack.

Register windowing in OCaml As I started to work on function calls in the backend I found out
that windowed registers were not supported. The compiler assumes that caller’s and callee’s results
registers are the same, but this is not the case for windowed registers. I had a choice to make: use the
tricky windowed registers calling convention for OCaml compilation along with some compiler hacking
to support that, or use flat registers in OCaml mixed with windowed registers in C. I felt that the latter
option would be easier to work with, and that’s what I chose to implement. As a consequence I had to
develop non standard interfaces between windowed and flat calling conventions.

Negative offset load The fastest way to load a value into memory is to use the L32I instruction. It’s
a load from a register address with a non-negative immediate – multiple of 4 – offset with a range from
0 to 1020. This instruction is mostly used for stack and heap access. However there is a case where a
negative offset has to be used, and that’s because of the internal representation of OCaml blocks. Blocks
are OCaml values allocated on the heap, represented by the address of the data segment of the block.
Block header is accessed by accessing the 32 bit value at data address minus 4 bytes. That is a negative
offset, hopefully the shorter range L32E existed for windowed registers features and is useful in our case.

9https://0x04.net/~mwk/doc/xtensa.pdf
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Conditionals To achieve conditionals two sets of instructions are available, but they do not cover every
kind of comparisons:

• Conditional move: one register = 0, 6= 0, < 0,≥ 0.
• Cond. branch: two registers or a register and an immediate value, signed or unsigned =, 6=, <,≥.

It’s possible to achieve every kind of conditional branch by using simple transformations:

• r1 > r2 ⇐⇒ r2 < r1
• r1 ≤ r2 ⇐⇒ r2 ≤ r1
• r1 > n ⇐⇒ r1 ≥ n+ 1
• r1 ≤ n ⇐⇒ r1 < n+ 1

Exception handling with windowed registers In OCaml, a try-with block is implemented by
pushing data on the stack when entering the block, popping it when leaving, and using the data when
an exception is raised. The trap pointer is a special register that holds the innest try-with block data.
Each try-with block holds a pointer to its exception handler and a pointer to the outer try-with block
data, with the last exception block pointing to the default handler that prints a Uncaught exception
message. Special work has been done on exception handling as windowed registers makes it a bit trickier.
When an exception is thrown, either the window needs to be rotated back to the correct level in the catch
handler, or make sure every register is spilled before continuing. In OCaml-only code, there is nothing to
do as I use a flat calling convention with no register windowing, so a standard exception procedure can
be used. However raising an OCaml exception from C as done by caml_raise_exception needs to spill
every windowed register before jumping in the exception handler. This is done using a dummy syscall.

2.3 Cross-compiling for ESP32 microcontrollers

2.3.1 Integration with OCaml compilation

The prerequisite for ESP32 cross-compilation are to have a GCC cross-toolchain, the ESP-IDF and an
OCaml cross-compiler with my backend implemented. The compilation flow is the following:

• Write .ml files.
• Use ocaml -output-complete-obj to create a library which exposes OCaml entry point caml_startup.
• Glue code written in C that calls caml_startup and exposes app_main.
• Configuration and linking step with ESP-IDF.
• Flash the chip.

2.3.2 Integration with build systems

There are a lot of build systems used by OCaml packages that have more or less support for cross-
compilation. I had to learn about them in order to port the packages I needed to the ESP32 platform.

• Dune (formerly Jbuilder): this is probably the most popular build system used to build Mirage
packages. It provides cross-compilation support trough the -x esp32 option. It has support for
preprocessors and requires in most cases no other modification to cross-build the package. When
building with -x target, it looks for target packages in the target-sysroot/lib subdirectory of
the current opam switch, and builds with target-sysroot/bin binaries.

• OCamlbuild/OASIS: used for some packages, it uses ocamlfind to figure out where cross-compiled
packages and the cross-compilation toolchain are located. Both expose a -toolchain option that is
transmitted to ocamlfind which is configured by a file written when the toolchain is installed. In
order to be compatible with jbuilder, the ocamlfind configuration file points to esp32-sysroot
subdirectory for binaries and packages.

• Makefile: often handmade for old packages, these are the hardest to cross-compile as tweaking is
mandatory. When they use ocamlfind, env OCAMLFINDTOOLCHAIN=esp32 make can be sufficient to
cross-compile files. However sometimes compiler and feature discovery can be completely hardcoded,
letting me with no choice but to rewrite the Makefile or setting up the package with a modern build
system.
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2.4 How to port a package for a new architecture

2.4.1 The opam package manager

Even if there are a lot of build systems to use, at least OCaml is provided with a single package
manager that everyone use. Opam is a source-based package manager that supports multiple compilation
installations, named as switches. Each switch relies on a chosen version of an OCaml compiler and has
its own set of packages. Its main repository10 is managed by OCaml Labs but it’s possible to add custom
repositories, as I’ve done for ESP32.

2.4.2 Ad-hoc support for cross-compilation

It’s easy to think that cross-compilation is just a matter of installing a switch with the cross-compiler
as a base compiler, but it’s not the case as it’s almost mandatory to have an host compiler to build
packages. It’s because of preprocessors. Preprocessors is pieces of code written in OCaml that allow
OCaml code to extend its syntax. These are used to lower the amount of code to write by generating
boilerplate that no one wants to write. A good example for this is the cstruct rewriter that allows to
use structures from C in OCaml. For example, this code describes an Ethernet II header data structure:

[%%cstruct
type ethernet = {

dst: uint8_t [@len 6];
src: uint8_t [@len 6];
ethertype: uint16_t;

} [@@big_endian]]

The cstruct preprocessor automatically generates the following signature with the corresponding imple-
mentation:

val sizeof_ethernet : int
val get_ethernet_dst : Cstruct.t -> Cstruct.t
val copy_ethernet_dst : Cstruct.t -> string
val set_ethernet_dst : string -> int -> Cstruct.t -> unit
val blit_ethernet_dst : Cstruct.t -> int -> Cstruct.t -> unit
val get_ethernet_src : Cstruct.t -> Cstruct.t
val copy_ethernet_src : Cstruct.t -> string
val set_ethernet_src : string -> int -> Cstruct.t -> unit
val blit_ethernet_src : Cstruct.t -> int -> Cstruct.t -> unit
val get_ethernet_ethertype : Cstruct.t -> Cstruct.uint16
val set_ethernet_ethertype : Cstruct.t -> Cstruct.uint16 -> unit
val hexdump_ethernet_to_buffer : Buffer.t -> Cstruct.t -> unit
val hexdump_ethernet : Cstruct.t -> unit

Opam doesn’t know about cross-compilation, so there is no standard to set up such an environment. I’ve
been inspired by whitequark to create an opam-cross-esp3211 repository which contains all the packages
I ported for my cross-compilation environment. As in opam-cross-windows, opam-cross-android and
opam-cross-ios, my repository contains an ocaml-esp32 package which installs the cross-compilation
toolchain for ESP32 in the esp32-sysroot subdirectory of the current switch. It also configures ocamlfind
to properly point to cross-binaries and packages when used with the -toolchain esp32 option. Packages
are then installed in the esp32-sysroot/lib subdirectory.

ocaml-esp32 has only two dependencies. The first is ocamlfind in order to be able to install the
configuration file. The second one is gcc-toolchain-esp32 which is a package that installs the cross-
toolchain for ESP32 in the switch and makes it available in the PATH.

In order to avoid name clash, every cross-compiled package for ESP32 has an -esp32 suffix. For
packages that already have -esp32 as a suffix – such as system-specific Mirage implementations – it’s
replaced by -impl-esp32 for aesthetic purpose.

10https://github.com/ocaml/opam-repository
11https://www.github.com/well-typed-lightbulbs/opam-cross-esp32
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2.4.3 Porting packages

Porting Dune packages is easy because of the -x esp32 option that automatically generates an in-
stallation file for the correct prefix, which is esp32-sysroot/lib. Manual work remains when the code
includes non portable C. For other packages installation is more or less easy, with sometimes having to
specify in which directory the package should be installed.

I’ve developed an automatic port tool – named opam-ezport12 – which aims to semi-automatically port
packages to a platform by importing the opam definition, adding an -esp32 suffix and adding -x esp32
when a dune build system is recognized, and doing this recursively for dependencies. It also imports
packages from other build systems but does nothing to it beside indicating that manual work has to be
done.

3 Unikernels for embedded applications

As I got a native compilation backend, a part of Mirage unikernel library has been ported to ESP32 as
a base for real world applications.

3.1 Unikernels and Mirage

3.1.1 What is an unikernel ?

Figure 6: Full unikernel stack sample for
ESP32. Blue is full OCaml code. Grey
is my C/OCaml interface implementation.
Black is ESP-IDF, written in C.

A traditional application relies on an operating system to
run. A part of the operating system is the kernel which pro-
vides system features trough system calls which makes the
interface between hardware and applications. When the ap-
plication needs a system feature, such as input/output, it
calls the kernel and cause a context switch which put the
processor from user into privileged mode while the kernel ex-
ecutes I/O operations. Unikernels get rid of the user/kernel
separation. The application is directly linked to system fea-
tures and runs in priviledged mode.

This allows an application to be shipped with only the code
it needs. Using specialized system features as a library in-
stead of general purpose operating system has several advan-
tages. It reduces code size thanks to dead code eliminations,
increase speed by getting rid of kernel context switches and
thus allowing more aggressive optimizations, and increases
safety by reducing the code base size, decreasing the surface
of attack of a specialized application and opening the door
to formal proving of system features. Unikernels allow the
deployment of lightweight single-purpose virtual machines,
which are in theory more efficient than a single-purpose appli-
cation on a general purpose virtual machine. Typical uniker-
nel applications include DNS, DHCP and HTTPS[4] servers

and that’s what I wanted to get running during my internship.

3.1.2 Mirage ecosystem

The Mirage ecosystem is a framework that builds unikernel applications written in OCaml. It can target
unix operating systems, and virtualized environments such as Xen [1] and ukvm. Mirage is composed of
a command line interface and a library made of dozens of opam packages13.

12https://github.com/TheLortex/opam-ezport
13https://github.com/mirage
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Mirage library Mirage gives module signatures and type definitions to define the system features that
the library wants to offer. These can be found in the mirage-types14 package and dependencies. For
each feature there is a package defining types for this feature. For example mirage-random defines a
Mirage_random.S signature:

module type S = sig
(** The type for memory buffer. *)
type buffer
(** The state of the generator. *)

type g
(** [generate ~g n] generates a random buffer of length [n] using [g]. *)
val generate: ?g:g -> int -> buffer

end

These module types serve as a base for more complex Mirage modules, such as a web server. Module
implementations are either portable or specialized in different packages. For example Mirage protocols
signatures are implemented by tcpip in a portable way, relying on a Mirage_net.S module implementa-
tion which is not portable. As a consequence the Mirage_net.S signature has a different implementation
whether it’s targeting Unix15 or Xen16. A goal was to identify system-specific implementations and add
my own for ESP32 target.

Figure 7: Module dependency tree of an
unikernel requesting the network stack. In
red are the system-dependent features.

CLI Mirage is shipped with a mirage executable which
is used to configure and build applications. The configu-
ration command is mirage config -t <target> that pre-
pares code and dependencies for the chosen target according
to the unikernel configuration file config.ml. The configu-
ration file specifies which features are used. It also allows to
input configuration or runtime parameters, these are named
keys. Keys in Mirage can be used to choose between two
implementations at configuration time, or specify a listening
port for a server. When mirage config is used, it resolves
module dependencies for the chosen target, writes package
dependencies and generates the startup file which consists
in initializing requested features before calling the unikernel
entry point with the features as parameters.

3.1.3 Mirage as a functor library

OCaml modules hide implementation behind a signature,
which defines types and functions that the module makes
available. These are useful to separate features into specific
namespaces and is the entry point to generalization. Module
signature allows efficient separation between what is needed
for the implementation and what is available to the user. Here is an example of an OCaml module and
its implementation. You can note that the message variable is not externally available.

module type Hello_type =
sig

val hello : unit -> unit
end

Module signature example

module Hello : Hello_type =
struct

let message = "Hello"
let hello () = print_endline message

end

A module implementing the Hello_type signature.

Figure 8: Syntax for OCaml modules and signatures

14https://github.com/mirage/mirage/blob/master/types/mirage_types.ml
15mirage-net-unix
16mirage-net-xen
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Functors are modules parameterized by other modules. They allow the design of abstractions and is
a good way to increase code reusability. For example sets in OCaml are implemented as the Set.Make
functor that takes an OrderedType module argument. Implementation for sets is therefore abstracted.
The drawback is that Set.Make needs to be used for every needed set type. A functor can also be
constrained by a signature.

module Hello_twice
(H : Hello_type) : Hello_type =

struct
let hello () = H.hello ();

H.hello ()
end

Functor that takes a module with a hello function
and creates a hello function calling the module’s hello
twice.

module Hello : Hello_type =
struct

let hello () = print_endline "¡Hola!"
end

Another module implementing Hello_type.

module H2 = Hello_twice(Hello)
module H3 = Hello_twice(Hello_in_spanish)
module H4 = Hello_twice(Hello_twice(Hello))
let _ = H2.hello ();

H3.hello ();
H4.hello ()

Instanciating modules and calling its functions. Executing this code will print "Hello" twice, "¡Hola!"
twice and "Hello" four times

Figure 9: Functor syntax in OCaml, with a little example.

Mirage is basically a big set of functors describing portable features relying on a small set of system-
dependant modules. These functors are plugged together by the Functoria library, which allows configure-
time modularity.

3.2 Mirage system-dependent code

Mirage rely on a very small amount of system-dependent code. Every Mirage target implements an OS
module containing the basic features a portable application needs. System-dependent modules used for
other purposes such as networking are contained in other packages, but we’ll take a look at some of these
later.

3.2.1 Lightweight threads

Mirage unikernels and libraries are designed as single-process concurrent applications. Concurrency
is achieved trough cooperative scheduling by extensively using the Lwt (lightweight threads) library
introduced in 2008 [6]. Instead of relying on a preemptive scheduler that randomly switches between
threads according to timer interruptions, Mirage relies on a cooperative model. Whereas threads in a
preemptive model doesn’t have to do anything, cooperative threads are in charge of calling the scheduler
back when their work is done, waiting for input/output or sleeping for a given duration. These instants
are cooperation points, where the scheduler takes control before jumping to the next task to run.

A Lwt thread returning a value of type ’a has type ’a Lwt.t. Threads can be created and com-
posed respectively with return : ’a -> ’a Lwt.t and bind : ’a Lwt.t -> (’a -> ’b Lwt.t) ->
’b Lwt.t. This actually describes a monad. Lwt features includes synchronization, waiting for events,
sleeping threads, concurrent execution (join : unit Lwt.t list -> unit Lwt.t creates a thread that
waits for a list of threads to be executed).
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To make all of this useful, a single function needs to be implemented: run : unit Lwt.t -> unit.
This a rather central system-dependent part that I had to implement in the OS.Main submodule. In my
first version threads could only wait for timer events. This was implemented17 using a priority queue as
an efficient way to look up for the next thread to wake.

3.2.2 Time

The OS.Time module is essential for scheduling features and allows thread to sleep for a specified
duration. It exposes a monotonic clock with microsecond precision.

3.2.3 Event system

As I developed networking features I was in need for a fine-grained way to wait for network events,
and events in general. My main inspiration – solo5 – actually relies on an all-or-nothing event system, so
I had to design it on my own. The goal was to support ESP32 wifi networking events which consists in
reacting to wifi startup, connection, disconnection, frame received for access point or station mode. Event
features are available in the OS.Event module. The event system makes use of the Lwt_condition feature
for scheduler to thread notification and the FreeRTOS’ event group18 feature for system to scheduler
notifications.

3.3 Using functors to build modular code: a wifi library story

My end goal after getting some basic Mirage applications was to take advantage of ESP32’s wifi features.
ESP-IDF provides a wifi driver and a network stack thanks to lwIP implementation. My goal was to
take advantage of the Mirage TCP/IP network stack written in OCaml instead of lwIP. This consisted
in writing an ESP32-specific network interface module and building the stack on top of it.

3.3.1 Network abstractions in Mirage

Networking features in Mirage are separated in a few packages: mirage-net gives the module signature
for a network interface, mirage-protocols gives module signatures for Ethernet, ARP, IP, TCP, UDP
and ICMP and mirage-stack gives the module signature for a TCP/IPV4 stack. The tcpip package
contains the protocols and stack implementation. The stack module implementation is functor-based
which makes it easy to plug in a custom network interface to have the whole stack running.

3.3.2 Building a TCPIP stack on ESP32

Figure 10: Module dependency
tree for a dynamic IP unikernel.

Wifi configuration is done in C, using ESP-IDF’s driver 19. The chip
has a transceiver, which makes it possible to setup an access point,
a station, or both at the same time. When the access point mode is
enabled, it supports up to 4 connected devices. My networking code is
separated in two packages: wifi-esp32 for general wifi bindings and
mirage-net-impl-esp32 for the Mirage Wifi network interface module,
complying with mirage-net signature.

Whereas Wifi setup is made easy by ESP-IDF, it’s not the case of
building a custom stack on top of it. Everything is made for lwIP
so I had to seek between the Wifi driver and lwIP, looking for how
to receive and send frames. Internal driver functions are exposed in
esp_wifi_internal.h. This file allow to send and received data frames
which is what is needed for a network interface. Sending a data frame
is done with esp_wifi_internal_tx and reception callback is set up
with esp_wifi_internal_reg_rxcb. The reception callback makes the
interface between C and OCaml wifi driver, storing pending frames and
using the event system to notify upper layers.

17https://github.com/well-typed-lightbulbs/mirage-impl-esp32/blob/master/lib/time.ml
18https://www.freertos.org/FreeRTOS-Event-Groups.html
19https://esp-idf.readthedocs.io/en/v3.1-rc1/api-reference/wifi/esp_wifi.html
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3.3.3 Integrating DHCP features

For most Mirage applications, a static IP allocated on unikernel
startup is sufficient. Therefore the default setup model for DHCP network stacks is:

• Initialize network interface.
• Use network interface to get a DHCP lease. Once got, stop using the network interface.
• Initialize the stack using the obtained lease.
• Start the main network loop using the network interface.
• Start the unikernel application.

The problem is that wifi configuration is actually done on the last step, with the possibility to dynam-
ically update wifi settings while keeping the stack running. Wifi settings include mode (station, access
point, or both), ssid, password, authentication protocol. To get a DHCP lease, we need the wifi to be
configured, therefore leading to a chicken an egg situation. I solved this by making the DHCP process
asynchronous. netif-dhcp-esp32 contains a set of functors that takes a network interface module in
input and implements DHCP logic to output a DHCP stream and a network interface connected to upper
layers. This layer looks for DHCP packets and transmit them to the DHCP client while transmitting the
remaining packets to upper layers.

4 Conclusion

4.1 Issues encountered

The main issue remained that ESP32 fall short in memory when used with OCaml. For simple appli-
cations I’ve been able to reduce memory footprint enough to be able to run it on a 520KB chip, but as
I start to use network features the 4MB version is mandatory. Memory optimizations we done in code
generation and by porting a dead-code elimination patch.

Cross-compilation support in OCaml was another tale, and I had to use various mysterious hacks to get
everything working fine together, even if I haven’t mentioned them all in my report. Cross-compilation
support should be an important issue in a language ecosystem design and this internship gave me insights
on that matter.

4.2 What remains to do

During this internship I personally felt like some work could be done on the OCaml programming
language. The ReasonML syntax appealed to me like a viable option for OCaml development. I also read
about modular implicits [7] that would be a way to solve the issue of function overloading in OCaml.

This work opened a large door for systems development on embedded devices. Adding a new language
for a platform is always a nice thing to have, as it brings its whole ecosystem with it. Only a small
set of features have been explored, thus remains not implemented Mirage and ESP32 features. It might
be interesting to create module abstractions for concrete features such as sensors. This could lead to
meta-programming over embedded devices. ESP32 features that have not been explored yet include:

• Ultra-low power processor
• Crypto-acceleration
• Bluetooth
• Sensors I/O (PWM, I2C, SPI, DAC)

Along with features, build reproducibility and memory optimization are important subjects for cross-
compilation on constrained devices. I feel like there remains plenty of work to do in order to get stable
builds that doesn’t run out of memory. For example something I missed was to get dynamic memory
profiling and accurate estimations of how much memory an application will use.
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4.3 What I have achieved

During this internship I’ve been able to build native code backend for the OCaml compiler which could
potentially go upstream. This backend is efficient enough to be able to run complex applications in such
a limited memory environment. This naturally lead to the port of Mirage features from cooperative
threads to a TPC/IP stack with TLS support. In the meantime I’ve been able to create OCaml bindings
for Wifi and LCD display. I’ve been able to create and show live demonstrations of these features in the
lab. Samples are available on Github as Docker images20 and as plain unikernel code21.

I also ported a compiler patch in order to get cross-module dead-code elimination, which yields a 30%
to 50% code size reduction for Mirage applications. The compiler was also patched to separate read-write
and read-only data in the last intermediate representation.

This internship gave me great insights on systems and compilation point of views while teaching me
that a lot remains to do.
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