
MirageOS 4: the dawn of practical build systems for exotic
targets

Lucas Pluvinage, Romain Calascibetta, Rudi Grinberg, Anil Madhavapeddy,
and the MirageOS team

1 Introduction
MirageOS 1 is a library operating system that constructs

unikernels for secure, portable and high-performance ap-
plications across a variety of cloud computing and mobile
platforms. OCaml code can be developed on a normal OS
such as Linux or macOS, and then cross-compiled into a
fully-standalone, specialised bootable unikernel that runs
under a hypervisor. The intention behind the project is
that the vast majority of code that runs in production sys-
tem should be written in type-safe OCaml, and also that
unnecessary dependencies can be stripped out at build
time in order to increase portability and reduce attack sur-
face.

Since its origins in 2007, the MirageOS ecosystem has
grown in breadth (the number of OCaml libraries avail-
able has tremendously increased) as well as in depth (the
number of compilation targets). The initial targets for Mi-
rageOS were simply normal operating system userspaces
and the Xen hypervisor. Today, it features support for
compiling to more hypervisors (KVM, FreeBSD’s vmm),
and more architectures (the ESP32 microcontroller, to
RISC-V) and with ever more minimal runtimes (some-
times not even requiring a boot layer).

For the MirageOS project, the biggest growing pain has
been taming all this growth by ensuring that the build and
packaging systems can effectively manage the new de-
mands placed on it by all this flexibility. For example,
cross-compiling to ESP32 chips requires using an OCaml
compiler fork, and passing custom options to the underly-
ing C toolchain, and using a homegrown linker to prepare
the final firmware. Ideally, this extra complexity for that
backend would not be exposed directly to end users.

The MirageOS 3 release in 2015 saw us integrate
closely with the opam 1.2 package manager, and have a
frontend tool that generates ocamlbuild descriptions that
would take care of much of this complexity. Now in 2019,
we are iterating towards the next generation of OCaml
Platform tools which implement the desired functionality

1https://mirage.io

much more natively.
The new MirageOS 4 toolchain now uses the “dune”2

build tool natively in order to support many advanced
cross-compilation and development workflow features.
This talk will introduce the dune features that improved
build experience either for cross-compilation or general
openness, and also explain how the features we con-
tributed to dune will also help the general OCaml library
ecosystem become much more portable and flexible to
other platforms such as JavaScript and WebAssembly in
the future.

2 Challenges
2.1 Variants, virtual libraries and default

implementations
The cmi linking hack is an age old trick in OCaml for

parameterizing libraries without using functors. The idea
is quite simple:

• Define interface(s) by writing some .mli files. We
dub these interfaces as the virtual modules and the
library that contains these modules as virtual.

• An implementation for a virtual library is another li-
brary that defines an .ml implementation module for
every virtual module in the virtual library.

• Generic library code is written against the virtual li-
brary.

• The selection of implementations (for the virtual li-
braries) is delayed until building executables.

The advantage is clear: we no longer have to commit
to particular implementations of interfaces until we need
to build a concrete executable. We can continue to write
generic code for libraries and are only required to provide
implementations when linking executables.

While the idea is clear, there are some non trivial diffi-
culties in making this work in practice, and so we added

2https://dune.build

https://mirage.io
https://dune.build


first-class support for this into dune 1.7.0, instead of re-
quiring manual linking rules as has been the case in the
past. This cleared the path to having MirageOS libraries
that had the same interface, but radically different imple-
mentations under the hook for a particular target platform
(e.g. one using C code, another bindings to syscalls, an-
other built with JavaScript stubs, another in pure OCaml).
In the talk, we will describe the details of how variants
work and provide some examples.

However each implementation in a project dependency
tree had to be manually selected. Dune 1.9.0 introduces
features for automatic selection of implementations. Vari-
ants is a tagging mechanism to select implementations
on the final linking stage by searching through available
implementations in the current scope of the dune depen-
dency tree and supplying them to the OCaml linker.

We first implemented variants in dune 1.9, with a sig-
nificant revision coming up to make the semantics clearer
in dune 1.11. While building the final executable, a set of
tags can be given to choose which libraries will implement
interfaces. This makes life a lot easier for MirageOS de-
velopers who can write platform-independent code with-
out understanding all the details of the various platforms
it might run on eventually.

Examples of variants:

• backend.{unix, xen, freestanding} al-
low to choose the correct backend for target-specific
libraries, such as mirage-net interface exposing a net-
work base layer.

• implem.{c, ocaml, js}: allow to choose be-
tween portability and speed for an algorithm such as
decompression

We will also describe in the talk who this has improved
the MirageOS ecosystem significantly in terms of open-
ness, since we decouple the process of creating a new
variant interface and the implementations behind it.

2.2 Cross-compilation
A lot of work has been done recently to have Mira-

geOS running on new platforms, such as RISC-V pro-
cessors or ESP32 boards. Along with openness issues,
cross-compilation is the main blocker for seamless use
of Mirage in production. However dune allows to build
OCaml and C code with the correct compiler or flags and
switches seamlessly between host and target binaries ac-
cording to their usage. Allowing multiple build contexts
enables easy cross-compilation that doesn’t require the
port of hundreds of packages.

It also opens the door for multiple-target unikernel
builds at once.

Target contextHost context

base ocaml compiler risc-v ocaml cross-compiler
cross-compilation flags

unikernel

cstruct

library

ppx_cstruct

cstruct

C stubsdiscover.ml

Figure 1: Having multiple build contexts is necessary to
cross-compile OCaml projects.

→ All solved by dune build contexts in
dune-workspace files.

In the talk, we will explain how a single dune project
can now systematically compile OCaml projects (includ-
ing with C stubs) to a variety of exotic hardware targets.
Our mechanisms are more generally applicable to other
users of OCaml who need to do embedded systems builds
as well.

2


	Introduction
	Challenges
	Variants, virtual libraries and default implementations
	Cross-compilation


