
OCaml on the ESP32 chip: Well Typed Lightbulbs Await

Lucas Pluvinage, Sadiq Jaffer and Anil Madhavapeddy

1 Introduction
The ESP321 is a relatively new low-cost and energy ef-

ficient system on a chip with builtin WiFi and Bluetooth.
It is a family of chips that all have a single- or dual-
core Tensilica Xtensa LX6 microprocessor with a clock
rate of up to 240 MHz. The ESP32 is aimed at embed-
ded hardware usage and is thus equipped with builtin an-
tenna switches, power amplifiers, low-noise receive am-
plifiers, filters and power management modules. The
ESP32 achieves ultra-low energy consumption through
power saving features including fine resolution clock gat-
ing, multiple power modes, and dynamic power scaling.
It also includs an ultra low power coprocessor that al-
lows ADC conversions, computation, and level thresholds
while in deep sleep, thus permitting long battery lifetimes.

The ESP32 relies on a new instruction set architecture
that requires a new code generation backend. The cur-
rent SDK is a patched gcc, and LLVM has not yet been
ported. In this talk, we will report on our successful port
of OCaml and MirageOS to run on this new processor. We
have successfully:

• Ported the bytecode OCaml runtime to boot and ex-
ecute OCaml program.

• Written a new ESP32 native code backend that
passes the “embedded” parts of the OCaml test suite.

• Booted MirageOS with its OCaml console, HTTP
client and framebuffer on a ESP32 with a display
module, in full native code.

• Written bindings to the Wifi APIs, permitting wire-
less connectivity from OCaml code to the outside
world.

In this talk, we will outline some of the challenges re-
lated to porting OCaml to a new hardware architecture,
some of our usecases behind the ESP32 family towards
building safer embedded environments, and finally some
approaches towards submitting our port upstream into the
mainline OCaml distribution.

1http://esp32.net

2 Challenges
2.1 Bootstrap

Since the ESP32 chipsets are typically in embedded
hardware with limited resources, they do not run a general
purpose operating system like Linux. Instead they use a
library operating system geared towards real time opera-
tion, such as FreeRTOS. This is a single-address space OS
that exposes hardware functionality directly as libraries,
with a libc-like layer bolted on top to facilitate compati-
bility with some applications.

Bootstrapping on this environment requires cross-
compiling from a host general purpose OS, since an
OCaml compiler will not run directly on the (rather slow)
ESP32 environment. We did this in a few steps: firstly by
porting the bytecode OCaml runtime, and then building a
native code compiler.

Porting the bytecode runtime first is a useful exercise
since it gets us familiar with the (often quirky) embedded
toolchains. The ESP32 toolchain includes the newlib libc
which we disabled, since our eventual goal was to run the
MirageOS environment instead of a pseudo-libc. We then
wrapped up the build steps in a Docker environment to
make the boot process reproducible and documented2.

Once the bytecode ran, we forked the OCaml code-
base to add a new native architecture target to the ocam-
lopt compiler3. This native code backend directly emits
ESP32 opcodes that can be linked along with the libasm-
run OCaml native runtime into an object file that inter-
faces with the FreeRTOS hardware drivers. Eventually,
these C hardware drivers could also be replaced with
OCaml equivalents, as has been done for other MirageOS
backends such as Xen. We first tested this using a qemu
software emulator, and then progressed to booting it on
the embedded hardware.

Finally, the hardcoded C entrypoint was replaced with
the MirageOS console and network infrastructure by
hooking in the relevant C functions to the CONSOLE and
NETIF module signatures in MirageOS. The Wifi mod-
ule in the ESP32 is a refreshingly clean C interface to
initialise and retrieve Ethernet frames from the wireless

2https://github.com/sadiqj/ocaml-esp32-docker
3https://github.com/TheLortex/ocaml-esp32

Figure 1: Three of the ESP32 hardware platforms that we
have ported OCaml and MirageOS to run on. They are
also capable of running on battery power for embedded
operation.

interface, and we soon had network packets flowing over
our local network! At this point, the rest of MirageOS was
the standard OCaml networking stack (tcpip, cohttp and
so on). We also have access to some ESP32 hardware that
has a display interface that is mapped as a framebuffer ac-
cessible from OCaml, which we will demonstrate during
our talk.

2.2 Memory Usage
The most difficult limitation to workaround in the

ESP32 is the limited on-board memory. The chip has
520kB of SRAM for data and instructions, and some hard-
ware bundles have larger 4-16MB of QSPI external flash.
In practical terms, this means ensuring very good linking
hygiene to ensure that unnecessary packages are not part
of the OCaml dependency cone.

The first thing we noticed is that code size could be sig-
nificantly improved by “sealing” the compiled executable
by removing dynamic linking, and reducing the amount of
module time initialisation work that happens. We did this
manually for some packages, and we could find good use
for the Link Time Optimisation4 pass to be considered for
inclusion into OCaml to add more principled dead-code
elimination to the OCaml ecosystem.

2.3 Cross Compilation
The other activity we did to improve the memory us-

age situation was to submit several fixes to upstream
Opam packages to remove unnecessary dependencies at
the opam level.

4https://github.com/ocaml/ocaml/pull/608

Since (unlike other architectures) everything is cross-
compiled in the ESP32, pulling in the full package depen-
dency cone is problematic. During the course of our work,
the developers of Jbuilder/Dune added cross-compilation
support to that build system, which made the package
management significantly more consistent than dealing
with a myriad of individual opam packages.

As a result, we can now automatically synthesise opam
packages that are cross-compiled to their ESP32 variants,
within the limits of only working with a set of build sys-
tems. This is sufficient to (e.g) compile a large portion of
the MirageOS package ecosystem for ESP32.

3 Usecases and Hardware
Our primary usecase for this work is to deploy safe, re-

liable MirageOS unikernels written in pure OCaml into
embedded environments. The ESP32 chipset is show-
ing up in a number of interesting hardware devices, but
is currently usually programmed in C. The combina-
tion of OCaml’s runtime efficiency and good support for
metaprogramming makes it an attractive language to base
IoT infrastructure on.

In terms of hardware, Figure 1 shows some of the
boards we are working with. They range from the tiny
Lolin32 chip (2-4 dollars each), to the ESP32 IDF ref-
erence board that includes more RAM and a builtin LED
display. We have also ported to the Matrix Voice, which
includes high quality microphones in order to build open
source voice assistants – this board also includes a Spar-
tan FPGA in addition to the ESP32 processors, which has
prompted us to begin investigating the use of the Hard-
Caml5 hardware design library.

3.1 Upstreaming
The native code port of ESP32 is in pretty good shape

now, and so we are considering the best route to upstream-
ing this so that it is tracked by mainline OCaml. This
requires some consideration of whether upstream OCaml
can accept a cross-compilation only architecture, and the
extra testing burden this would impose. The native code
patch itself is self-contained and does not disturb other
targets such as x86 or ARM, which is a good sign.

For the package ecosystem, the main work we need
to do is to integrate the build flags into Jbuilder/Dune
so that package cross-compilation can happen semi-
automatically. This is steadily happening via the work
ongoing in the OCaml Platform.

For MirageOS, we still need to integrate the ESP32
toolchain into the mirage CLI tool. This depends on
some of the core MirageOS packages being ported to

5https://github.com/janestreet/hardcaml

2

Dune, but after that we do not anticipate any particular
difficulties fitting it in alongside the other existing uniker-
nel targets.

3.2 Acknowledgements
We would like to thank Mark Shinwell, David Allsopp,

KC Sivaramakrishnan, Stephen Dolan and Gemma Gor-
don for their help and advice on making this work possi-
ble, and the MirageOS team lead by Thomas Gazagnaire
for timely library fixes. The Dune team lead by Jeremie
Dimino and Rudi Grinberg were extremely helpful with
adding cross-compilation features that were needed. This
hardware for this project was supported by a mini-projects
award from the Centre for Digital Built Britain, under In-
novateUK grant number 90066.

3

