
OCaml on the ESP32 chip
Well typed lightbulbs await

Lucas Pluvinage – ENS Paris

OCaml Workshop – ICFP 2018



Context

• A language: OCaml

• A platform: ESP32
• An application library: Mirage

1



Context

• A language: OCaml
• A platform: ESP32

• An application library: Mirage

1



Context

• A language: OCaml
• A platform: ESP32
• An application library: Mirage

1



ESP32 microcontrollers

2



ESP32 microcontrollers – hardware

3



ESP32 microcontrollers – software

• Espressif IoT Development Framework (ESP-IDF)
• FreeRTOS (Real-Time Operating System)
• Written in C – Xtensa backend for GCC
• MicroPython port available

4



ESP32 microcontrollers – software

• Espressif IoT Development Framework (ESP-IDF)
• FreeRTOS (Real-Time Operating System)
• Written in C – Xtensa backend for GCC
• MicroPython port available

4



Mirage unikernel framework

What is an unikernel ?

Picture from Unikernels: Library Operating Systems for the Cloud
5



Time for a demonstration



Time for a demonstration

6



Compiling OCaml for ESP32



Compilation paths

Picture from https://dev.realworldocaml.org/compiler-frontend.html
7

https://dev.realworldocaml.org/compiler-frontend.html


Bytecode execution path on ESP32

8



Native compilation support for Xtensa processors

OCaml compiler backend

• asmcomp/xtensa/
• proc.ml: processor and calling conventions
• arch.ml: architecture
• emit.mlp: assembly emission

• asmrun/xtensa.S runtime interface between OCaml and C

No interference with the OCaml compiler code !

9



Register windowing and calling conventions

10



Cross-compiling for ESP32 microcontrollers

• Integration with build systems: from a single parameter to more
extensive tweaking.

• Integration with opam:
• OCaml 4.06.0+32bit switch
• Cross-compiler in [switch root]/esp32-sysroot
• This allows to access both host and target packages.

• opam-cross-esp32: 127 packages ported for
cross-compilation.

11



Unikernels for embedded
applications



Unikernels and the Mirage project

12



What to you need to build a standalone application ?

13



OS.Main.run: unit Lwt.t -> unit

• Collaborative threading with Lwt library:
bind: 'a Lwt.t -> ('a -> 'b Lwt.t) -> 'b Lwt.t
return: 'a -> a Lwt.t
join: unit Lwt.t list -> unit Lwt.t
pick: 'a Lwt.t list -> 'a Lwt.t

• Timer feature:
Time.sleep_ns: int64 -> unit Lwt.t

• Event system:
Event.wait_for_event: int -> unit Lwt.t

14



Porting network features

15



Porting network features

• Netif:
• write: t -> buffer -> (unit, error) result Lwt.t
• listen: t -> (buffer -> unit io) -> (unit, error)
result Lwt.t

• mac: t -> macaddr
• get_stats_counters, reset_stats_counters

• Netif_DHCP: input a Netif and outputs a Netif and a DHCP
module. Acts as a multiplexer.

16



Results



Applications

• LCD screen control
• Wifi AP/Station mode/both
• HTTPS
• DHCP
• DNS

Application Code Magic (LTO) Rodata Dynamic RAM
Hello world 764K 270K 151K 133K

AP - DHCP server 1058K 405K 256K 270K
STA - DHCP client 1217K 446K 289K 215K

HTTP fetch 2366K 1083K 622K 600K
HTTPS fetch 2364K 1224K 735K 700K

LCD canvas over HTTP 2368K 1038K 592K 700K

LTO is fantastic! See PR#608 in ocaml/ocaml

17

https://github.com/ocaml/ocaml/pull/608


Applications

• LCD screen control
• Wifi AP/Station mode/both
• HTTPS
• DHCP
• DNS

Application Code Magic (LTO) Rodata Dynamic RAM
Hello world 764K 270K 151K 133K

AP - DHCP server 1058K 405K 256K 270K
STA - DHCP client 1217K 446K 289K 215K

HTTP fetch 2366K 1083K 622K 600K
HTTPS fetch 2364K 1224K 735K 700K

LCD canvas over HTTP 2368K 1038K 592K 700K

LTO is fantastic! See PR#608 in ocaml/ocaml

17

https://github.com/ocaml/ocaml/pull/608


Applications

• LCD screen control
• Wifi AP/Station mode/both
• HTTPS
• DHCP
• DNS

Application Code Magic (LTO) Rodata Dynamic RAM
Hello world 764K 270K 151K 133K

AP - DHCP server 1058K 405K 256K 270K
STA - DHCP client 1217K 446K 289K 215K

HTTP fetch 2366K 1083K 622K 600K
HTTPS fetch 2364K 1224K 735K 700K

LCD canvas over HTTP 2368K 1038K 592K 700K

LTO is fantastic! See PR#608 in ocaml/ocaml
17

https://github.com/ocaml/ocaml/pull/608


Conclusion

Main issues

• Memory usage

• Bad cross-compilation support

Overview

• Lot of exploration that resulted in a great proof of concept
• Opportunity for further research in the field of unikernels for
embedded devices

• Very pleasant team and lab!

18



Conclusion

Main issues

• Memory usage: fixed by micro-optimizing assembly generation,
taking care of where data is stored, and porting a dead-code
elimination patch

• Bad cross-compilation support

Overview

• Lot of exploration that resulted in a great proof of concept
• Opportunity for further research in the field of unikernels for
embedded devices

• Very pleasant team and lab!

18



Conclusion

Main issues

• Memory usage: fixed by micro-optimizing assembly generation,
taking care of where data is stored, and porting a dead-code
elimination patch

• Bad cross-compilation support

Overview

• Lot of exploration that resulted in a great proof of concept
• Opportunity for further research in the field of unikernels for
embedded devices

• Very pleasant team and lab!

18



Conclusion

Main issues

• Memory usage: fixed by micro-optimizing assembly generation,
taking care of where data is stored, and porting a dead-code
elimination patch

• Bad cross-compilation support

Overview

• Lot of exploration that resulted in a great proof of concept
• Opportunity for further research in the field of unikernels for
embedded devices

• Very pleasant team and lab!

18



Resources and conclusion

• well-typed-lightbulbs Github organization.
• https://www.lortex.org/esp32/ blog posts.

19



Resources and conclusion

• well-typed-lightbulbs Github organization.
• https://www.lortex.org/esp32/ blog posts.

19


	Time for a demonstration
	Compiling OCaml for ESP32
	Unikernels for embedded applications
	Results

